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Abstract

We will model the ether as a fluid field governed by Navier—Stokes equa-
tions; embedding electromagnetism by means of the velocity field and
gravity as emergent pressure, and the speed of light not being constant.
We will show a fluid field solution to the two-body problem which redefines
gravitational constant under the evolution of cosmic time.

Introduction

The simplified equations of motion for a non-relativistic fluid field are,

V-V =Q(x,t) (1)
V-W=0 2)
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Coupled with the modified continuity equation which models the source of the
fluid field properties,
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The general fluid field is characterized by its velocity V, it’s vorticity W =
V x V,it’s spin S = V x W, and it’s stress tensor 7(x,t) The energy field
® represents the fluid’s combined potential of the pressure, kinetic energy and
stress induced sources, p(x,t) is the density-tensor field; and the divergence
term is Q(x,t).



Describing A Fluid Field

We begin by defining the fundamental quantities describing the fluid. The scope
has been theoretically expanded but nonetheless it reduces to down to classical
dynamics.

Definition: Density as a Scalar Field.
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pm = mass density (kg/m®)

pq = charge density (C/m®)

pE = energy density (J/m”)
where: py = probability density (1/m®)
mg, = mass per unit charge (kg/C)
m, = quantum mass scale (kg)

¢ = speed of light (m/s)

Collectively, these can be viewed as components of a scalar density field that
fully characterizes the fluid’s local state, enabling a unified treatment of mass,
charge, energy, and other physical quantities.

Definition: The Stress Tensor.

The stress tensor 7(x,t) is a symmetric rank-2 tensor field that encodes the
internal forces per unit area within the fluid, generalizing scalar pressure to
include anisotropic, viscous, quantum, and other internal stresses.! In this
framework, the stress tensor is naturally decomposed into distinct gauge-like
components reflecting the multifaceted nature of the fluid’s internal dynamics:

1[3] The stress tensor is rigorously defined as a second-order tensor field o that maps an
oriented surface normal n to the traction vector t = on, encoding internal forces within the
continuum. It satisfies the balance of linear momentum dive + pb = pv and is symmetric
due to angular momentum balance. For a detailed, coordinate-free, and geometric treatment
of the stress tensor and related continuum mechanics principles, see Marsden and Hughes
(1983), Mathematical Foundations of Elasticity.



T = T quantum + Tviscous T Tnon-viscous T * - )
where each component corresponds to a specific physical mechanism:
® Tguantum Tepresents quantum-coherent stresses arising from spatial vari-

ations in the quantum density field and quantum potential, capturing
nonlocal and inherently non-classical effects.

® Tyiscous accounts for classical viscous stresses generated by fluid deforma-
tion rates, shear, and bulk viscosity.

® Tion-viscous includes non-dissipative, elastic-like, or other intrinsic stresses
not accounted for by viscosity or quantum coherence.

This multi-component tensorial formulation captures the interplay between clas-
sical fluid mechanics, quantum effects, and other physical phenomena within a
unified tensorial framework.

The Navier—Stokes Equation for a Compressible Fluid.

We consider the momentum conservation equation for a compressible viscous
fluid without external body forces?:
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where,

e V(x,t) is the fluid velocity field (vector field).

e p(x,t) is the scalar pressure field.

e p(x,t) is the fluid density, potentially a scalar density field.

e 7(x,t) is the viscous stress tensor.

Using the vector calculus identity,
2
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we rewrite the momentum equation as,
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2[2] See, P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics, 6th Edition,

Academic Press, 2015, Chapter 6, for a detailed derivation of the compressible Navier—Stokes
equations including viscous stress tensor formulations.

V- 7(x,t).




Define the scalar potential,

D(x,t) =
where the kinetic energy density is,

Elx,t) = p(x, )|V (x, D2

2
This allows expressing the velocity evolution as,
oV 1
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where S = V x (V x V) represents the vortex force contribution. Therefore the
vorticity vector field is,
W(x,t) =V x V(x,t).
Due to fluid compressibility, the divergence of velocity generally does not vanish,
V-V = Q(X7 t)a

where Q(x,t) is the compressibility or volumetric source term.

This concludes the derivation of the general fluid field equations in the stress-
tensor gauge framework, with density treated as a generalized scalar field and
the viscous stress tensor explicitly included. The resulting system provides
a versatile starting point to explore diverse physical regimes including elec-
tromagnetism, gravity, and quantum fields as emergent phenomena from fluid
dynamics.

The Material’s Properties

The equations of motion of a fluid are described by its material properties, the
fluid’s physical nature is the key factor in determining the resultant motion.
The determining factors of physical properties of the material depend upon its
stress and it’s density, which are subsequently intertwined, and thus gauges
are applied to study the motion of our fluid and henceforth everything within
in it.

The Density p

The density p of the medium can vary in both space and time. It is a function
governed by the internal flow and volumetric expansion or compression. The
evolution of density in a non-homogeneous medium is governed by the continuity
equation?,
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3[2] See P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics, 6th Edition,
Academic Press, 2015, Chapter 3, for a detailed treatment of the continuity equation in
compressible flows.




where:
e V is the velocity field,

e Q(x,t) = V-V is the divergence of the velocity field (a measure of local
expansion or compression),

The Static Solution

To understand the long-term behavior of the medium, we take the limit as time
approaches infinity,

. Op .
Jim - = lim (=V-Vp-pQ(x,1)),

this gives the steady-state condition,

Qx,t) = ——(V-Vp) (6)

1
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At the steady state, the time derivative of the density vanishes, meaning the
system has reached a dynamic equilibrium. Showing that local expansion or
compression is exactly balanced by the advection of density in the flow. This
condition characterizes how steady-state density distributions are maintained in
non-uniform, compressible media.

The Non-Static Solution
The evolution of density in a compressible fluid is given by the continuity equa-
tion:

0

ot
where:
e p = p(x,t) is the fluid density,
e V =V (x,t) is the velocity field,

e Q(x,t) := V-V is the velocity divergence.

To model external mass injection or extraction, we decompose the total density
into an initial spatially varying density and a variable incoming mass density:

p(x,t) = p(x,0) + pm(x,1),
where:
e p(x,0) is the initial density distribution, which may vary with position x,

e pn(x,t) represents the added or removed mass density due to external
input or extraction.



Since p(x,0) is constant in time,

p _ Opm
ot ot ’
and the spatial gradient decomposes as,

Vp=Vp(x,0) + Vo (x,1).

Substituting into the continuity equation, we have

pm
% = -V (Vp(x,0) + Vo (x,1)) — (p(x,0) + pm(x, 1)) Q(x, t).
Rearranging to isolate the velocity divergence yields:
Qx,1) = — ! (apm+v Vp(x,0) + V-V (xt)> (7)
T T, 0) + pm(x,t) \ 0t PR Pmi6E) ) -

This shows that the velocity divergence (the source/sink) Q(x,t) := V -V
depends explicitly on both the local time rate of change and spatial variation
of the incoming mass density pn,(x,t), as well as on the spatial gradient of
the initial density distribution p(x,0), scaled by the initial density. The total
instantaneous density at each point can be denoted as

ps(x,1) = p(x,0) + pm(x, ).

e When the advection terms V - Vp(x,0) and V - Vp,,(x,t) are negligible
(e.g., small spatial gradients or slow velocity variations), Eq. (7) reduces

to,
1 Opm

Ps (Xv t) ot~

o If, further, p,, < p(x,0), then p(x,0) + pm(x,t) = p(x,0), giving the
classical approximation,

V-Vx—

1 Opm
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Physically, the velocity divergence measures the local volumetric expansion or
compression driven by the net injection or removal of mass and its transport.
This result connects the macroscopic fluid kinematics (divergence of velocity)
directly to the microscopic process of mass injection or removal encoded by the
incoming mass density pn,.

The Stress 7

The stress tensor T encodes the ability of momentum to diffuse through the fluid
medium. It thus relates to the internal dynamics of the medium. The types
of stress can either be homogeneous—where stress is distributed evenly—or
non-homogeneous—where stress is not evenly distributed—or other reasonable
forms.



A Static Fluid

A homogeneous fluid medium is one in which the medium’s parameters—such
as density p, viscosity u, and compressibility (the bulk modulus A\)—do not vary
with position. That is,

Vp=Vupu=VA=0,

this assumption simplifies the dynamics. First we express the evolution of the

velocity field as:

A% 1
N _ veistliv.or
ot p

For a Newtonian fluid, the stress tensor takes the form?*,
T=p(VV+(VV)") + NQ(x, 1)L

In a homogeneous Newtonian fluid, because all spatial gradients of medium
coefficients vanish, when taking the divergence of 7, only the derivatives of the
velocity field remain, yielding:

VT =puVV A+ A+ p)V(Q(x, 1)),
this expresses two key mechanisms of viscous interaction:

e Shear diffusion from V2V, which smooths out transverse velocity gradi-
ents.

e Compression from VQ(x,t) smooths out volume changes.

e The shear viscosity is v = %, and the bulk viscosity is ip“.

Resolving the compression from the source term inside the potential, the equa-
tion becomes the classical Navier-Stokes equation:
ov

- = 2
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The internal forces that arise from gradients in motion are purely a consequence
of deformation; the fluid dynamics arise purely from interactions between mo-
mentum, vorticity, and pressure-like effects—mnot from any position-dependent
medium variations.

A Non-Static Fluid

In contrast to a homogeneous fluid medium, a non-homogeneous fluid medium
is spatially dependent; this spatial dependence must be accounted for in the
evolution of the velocity field. The general medium equation is,

ov

1
9 _ve+s
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4]2] See, P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics, 6th Edition,
Academic Press, 2015, Chapter 6, for a detailed derivation of the compressible Navier—Stokes
equations including viscous stress tensor formulations.

V- 1(x,t),




here, the viscous stress tensor 7 may now depend on position, not only through
gradients of velocity, but also through spatially varying viscosity®:

T = u(x) (VV + (VV)T) + A\(x)(Q(x, 1)1,

this introduces additional complexity into the dynamics. Notably, when taking
the divergence of 7, the spatial derivatives will now act on both the velocity
gradients and the variable coefficients:

Vot =Vux) (VV+(VV)T) + u(x)VV + V [A(x)(Q(x,1))] -

This introduces terms representing the medium’s inhomogeneities.5

The Material Propagation Speed c

Starting from the coupled continuity and Euler equations for an inviscid, com-
pressible fluid, one arrives at the governing equation for density perturbations

op(r,t):
o [186p 1 _ o2 1
oo ot oV Wp} =V (6/)2 5'0)’ ®

where p(r, t) is the background mass density, V(r, t) the flow velocity, and €(r, t)
the compressibility.

Expansion and Definition of ¢(r,t)

Expanding the Laplacian on the right-hand side yields

1) 1 1 1
v2<p2) = 2v25p+2v<2)~v5p+5pv2<2>. (9)
€p €p €p €p
This motivates the definition of the local material propagation speed:
9 1
c(rt) = —— (10)

e(r,t) p(r,t)

so that the full perturbation dynamics become

825!’ 2 2 1 2( 1
Jd[1
— —|=V - -Vép|. 11
6t[p v p} (11)

Equation (11) is the complete nonlinear density-wave equation, re-
taining both thermodynamic and advective corrections.

5[1] See, R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd
Edition, Wiley, 2007, Chapter 3, for treatment of position-dependent viscosity effects in fluid
stress tensors.

SNote: analgous to EFEs.



Static Case
If the medium is uniform and at rest,
p(rat) = Po; VZO)

then

v(L)=0  v(k)=o0
Equation (11) simplifies to

26
0"0p = 2V2%6p, c= .
ot? Vepo

Thus the wave equation reduces to the familiar acoustic form, with a con-
stant propagation speed c. This is the limiting case where perturbations
travel in straight lines with no distortion.

(12)

Case II: Non-Static, Inhomogeneous Background

For a general background p(r,t) and velocity V(r,t), none of the correction
terms vanish. Equation (11) then governs the full dynamics:

e The leading operator c?(r,t) V2§p describes local wave propagation,
but now the speed varies across space and time.

e The gradient corrections,
2V(#) Vop,  bp v“'(#) ,
encode nonlinear thermodynamic couplings, introducing refraction,
scattering, and effective potential terms.
e The final advection term,
o1
—— |-V -Viép|,
ot | p

represents convective transport of fluctuations by the flow.

In this regime, c(r,t) is no longer constant but a dynamical field deter-
mined by the evolving fluid background. Perturbations do not propagate as
simple sound waves; instead, they are refracted, scattered, and advected, re-
flecting the full complexity of a time-dependent medium.



The Electromagnetic Phenomena

Maxwell originally viewed electric and magnetic fields not as abstract entities
but as real stresses and motions in a continuous fluid-like ether”. Though the
ether concept was abandoned, our treatise reignites the original notion by treat-
ing electromagnetic fields as emergent features of any fluid’s internal stresses,
velocities, vorticities, and compression. Thus, whether in quantum fluids, plas-
mas, or the ether, electromagnetism appears as a response of the fluid, restoring
Maxwell’s fields as real descriptors of fluid motion and structure.

Describing Electromagnetism

Electromagnetism emerges naturally from fluid dynamics when interpreted through
the velocity field V(x, t) and scalar potential ®(x,t) of a compressible, vortical
medium. In this interpretation, the speed of propagation ¢, the permittivity &g,
and the permeability pg all arise from intrinsic fluid properties. We define the
electric and magnetic fields as:

E::—%—V@, B:=W=VxV.

These expressions reveal that:
e The magnetic field B corresponds to the fluid’s vorticity W.

e The electric field E represents the local acceleration of the fluid and gra-
dient of the potential.

Starting from the fundamental relations which can be derived from the explicit
definitions of the electromagnetic vector fields,

V-B=0, (13)
_0Q(x,t) o
V-E= =0 - VR, (14)
OB
VXxE= T (15)
V x B =VQ(x,t) — V?V, (16)

By using the Lorenz gauge condition, we relate the divergence of the velocity
field directly to the time derivative of the scalar potential scaled by the propa-

gation speed c.
100

“Ear
7[4] J. C. Maxwell, “On Physical Lines of Force,” Philosophical Magazine, vol. 21, 1861,
pp. 161-175, 281-291.

V-V =Q(x,t) =

10



This establishes that the fluid velocity responds instantaneously to changes in
the potential energy caused by variations in charge or mass distribution. Phys-
ically, this means the field adjusts locally without delay, while disturbances
then propagate through the medium as waves traveling at speed c. Thus, the
field dynamically “knows” about changes and reconfigures itself in a way that
preserves causality, ensuring information and energy propagate at a finite, phys-
ically meaningful speed.®

The Two-Body Problem

The two-body problem is contextualized in the framework of fluid dynamics,
such as two moving sinks in a fluid producing an effective gravitational interac-
tion.

Density Sink Model

Mass is treated as a time-dependent density sink, i.e., a localized loss of back-
ground fluid density:

1 Opm(x,t)

-V: =
v Qx,1t) o ot

(17)

where pg is the initial fluid density, and p,,(x,t) is the spatial mass-density
field.

Pointlike Density Sinks

For two pointlike bodies at positions x;(t) and x2(t) with time-dependent mass
injection rates 1 (t) and rha(t):

W — () 6(x — x1 () — 1ia(£) 6(x — xa(t)), (18)
so that
V-V =Q(x,t)= ,0170 [11 (t) §(x — %1 (1)) + 12 (t) 6(x — x2(1))] . (19)

For pointlike fluid masses, the Poisson equation becomes:

V2¢=—% - _%[ml 6(x —x1(t)) + 12 6(x — x2(t))] . (20)

We define the gravitational permittivity as

€g = poT?, (21)

8Explicit derivation of Maxwell’s equations have been left as an exercise of to the reader.
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And Newtons Gravitational Constant:
1

dmeg

So that the solution to Poissons equation becomes:

—X;

2

m;(t)
d(x,t) =G B LA Am—
2 ]

Gravitational Permeability and Dimensional Consistency

To ensure dimensional consistency analogous to electromagnetism, we introduce
a gravitational permeability 114, defined by

1

=—, 22
Ng €g C2 ( )
so that the gravitational wave speed satisfies
1
= . (23)
€9 Hg

This allows us to express Newton’s gravitational constant in terms of the wave
speed and gravitational permeability:

c? g
G="" (24)

where c is the propagation speed of gravitational disturbances in the fluid, and
Lg is the gravitational permeability with dimensions [L/M].

Cosmological Mapping and Numerical Scaling

Starting from the dimensional expression

c® g
G=—~2 25
L (25)
we note that g is defined by
1
= — 26
Hg 6902’ (26)
so that 1
G = . 27
dme, (27)

Introducing a characteristic radius R of the universe and the wave speed ¢, we

can write )

R R
C €g=p P (28)

12



which gives
2
Gr~——.
4w po R?

Cosmologically, the critical density p.it and the radius R satisfy approximately

(29)

1

R~ —. 30
Pecrit ( )
Substituting this relation, we obtain a numerically convenient form:
2
& ri
G~ — M7 ( 31)

" an Po

which matches the observed Newton constant. When py = 1, it assumes the
static case:

i@pm(x,t) _ 7(9pm(x,t)
po Ot ot

V-V=0Qxt)=— . (32)
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Change Notes For Second Version

¢ Removed the black hole singularity, although the result was inter-
esting it is not in the scope for this general treatise.

e Removed all relativistic mechanics, I am hoping for there to be a
paper in the future (named Special Fluid Field Theory) to deal with the
treatise of relativistic fluids and hence obtaining Einsteins field equation’s
without postulating that mass-energy interactions.

¢ Removed the dark forces analysis, again, although highly valuable
and interesting, it remains out of scope for this treatise and is better
accompanied with data analysis.

¢ Removed the appendix to make the paper easier to read.

e General reformulation of the paper. Firstly, the paper has been re-
furnished as a whole, the unification of forces has been introduced through
the density and stress tensors which accompanied the derivation of the
general fluid field equations. The gravitational section was refined, remov-
ing relativistic motion and including a dimensionally accurate formulation
of the two-body problem along with Newtons gravitational constant (with
the help of Dirac’s LNH to resolve the dimensional inconsistency). The
electromagnetic section was reduced - Maxwell’s equation are generally
treated as self-evidently arising from the definition of the electromagnetic
vector fields of the fluid, and finally the quantum mechanical section has
been refined to show it’s derivation and applicability.

e I removed the grandiose conclusion, the quotes listed in the conclu-
sion are of much interest with respect to the treatise but I thought ought
to keep this treatise purely scientific.

e Future work includes, as above, and also: conciliating the observation-
problem within the context of GFFT, uncovering deeper insights about the
cosmological constants and there relationship with the observable universe
and expanding the scope of definitions of the density and stress tensors
to explore unknown fluids and there resultant phenomena, and of all;
due to the nature of theoretical study, that there may still remain some
inconsistencies which will need to be addressed by revision of the paper.

14



Change Notes For The Third Version

Thanks to anyone who supported this work indirectly, kind words go a long way.
This version, the third, has been redefined, the most important change note is
that rather than creating a new framework of physics I have only subjected
the ether to our analysis, the previous versions will still be publicly available
for anyone who is interested. This paper has been significantly reduced in size,
after this version, the theory should be much more standardized allowing for
collaborative effort in all aspects and experimental or analytical evidence to be
produced.

e Changed the vocabulary, Rather than using the loose terms such as
general fluid field theory, 1 have just stuck using ether to describe this
proposed fluid that permeates the cosmos.

e Included the upmost important analysis of the dimensional con-
sistency of Newtons gravitational constant, the section that allows
for the redefinition of the gravitational constant has now a sufficient ex-
planation of its dimensions, this section reveals that the units disappear
within approximation.

15
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